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1. Introduction

A widely used method for the prediction of particle dispersion in turbulent ¯ows is based on
the eddy interaction model, or EIM, (see, for example, Gosman and Ioannides, 1981; or Shuen
et al., 1984). In this model, the instantaneous ¯ow ®eld is reconstructed from mean ¯ow
quantities by assuming that it is comprised of eddies whose lifetimes and length scales can be
deduced from local mean ¯ow quantities. Usually, a turbulence model of the k±E type is used
to provide values of the mean ¯ow quantities and, as a consequence, the reconstructed
¯uctuating part of the ¯ow ®eld is isotropic. This feature is a de®ciency of the model which
becomes signi®cant in regions where the turbulence structure is anisotropic. The de®ciency can
be overcome by more sophisticated models which use the information provided by Reynolds-
stress turbulence models (see, for example, Berlemont et al., 1990; Zhou and Leschziner, 1991;
1996; and Burry and Bergeles, 1993).
However, k±E models are still widely used in industrial ¯ow problems to predict mean ¯ow

quantities in regions where the ¯ow is anisotropic. It is, therefore, the aim of this paper to
provide a simple modi®cation of the EIM, based on damping functions, which can account for
some of the e�ects of anisotropy in near-wall regions within the framework of k±E type
turbulence models. The intention is to use the method to simulate droplet dispersion in wave±
plate demisters, in which low intensity turbulent ¯ows typically occur. However, it is hoped
that the proposed modi®cation to the EIM will have wider application to industrial ¯ows in
which near-wall anisotropy is important.
The damping functions are obtained from the results obtained by Kim et al. (1987) and

Mansour et al. (1988) for the direct numerical simulation (DNS) of turbulent ¯ow through a
duct at a Reynolds number, based on the duct half width and friction velocity, of 180. The
method is then used to predict particle dispersion in a channel and the results are compared
with those of Kallio and Reeks (1989) and Liu and Agarwal (1974).
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2. The eddy interaction model and its modi®cation

In the EIM, the trajectories of a large number of particles are simulated individually. For
liquid droplets (modelled as hard spheres) moving through air, the gas to particle density ratio
is very small and this allows the particle equation of motion to be greatly simpli®ed. The
particle-laden ¯ow is assumed to be dilute so that particle±particle interaction and the e�ect of
particles on the ¯ow ®eld may be neglected. The in¯uence of gravity is also neglected because,
for the range of particle sizes to be considered, deposition is not strongly in¯uenced by
gravitational settling. Kallio and Reeks (1989) make a similar assumption when comparing
their predictions with the data of Liu and Agarwal (1974). Also, it is intended to apply the
results to horizontal ¯ow through wave±plate demisters with vertical plates, in which case
deposition due to gravitational settling is not the dominant mechanism. The particle equation
of motion is then

dv

dt
� uÿ v

t
: �1�

In Eq. (1) u and v are the velocities of the ¯uid and the particle, respectively, and t is time.
The relaxation time of a particle, t, is de®ned by

t � 4drp
3rfCDjuÿ vj �2�

where d is the particle diameter, CD(024/Rep) is the Stokes drag coe�cient, rf and rp are
the densities of the ¯uid and particle, respectively, and Rep=rf dvuÿ vv/m, is the particle
Reynolds number in which m is the ¯uid dynamic viscosity. From the assumption of Stokes
drag law it follows that t is a constant. For convenience, Eq. (1) can be non-dimensionalized
by using wall variables, the ¯uid kinematic viscosity n0 m/rf and the friction velocity ut. The
result is

dv�

dt�
� u� ÿ v�

t�
�3�

where t+= tut
2/n, u+=u/ut, v

+= v/ut and

t� � d2u2t�rp=rf�
v2

: �4�

Following Graham and James (1996), it is assumed that the ¯uid velocity remains constant
during a small time step dt+. The ¯uid velocity is changed whenever a particle enters a
new computational control volume or when it interacts with a new eddy. The integration time
step dt+ is adjusted to allow for this. Since t+ is constant, Eq. (3) can be integrated exactly to
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®nd

v��t� � dt�� � u� ÿ �u� ÿ v��t��� exp�ÿdt�=t��: �5�

The dimensionless position x+=(x+, y+, z+) of a particle at time t++dt+ can then also
be found exactly:

x��t� � dt�� � x��t�� ÿ t��u� ÿ v��t����1ÿ exp�ÿdt�=t��� � u�dt�: �6�

Here (x+, y+, z+)=(x, y, z)ut/n, where (x, y, z) is the dimensional particle position. The
above equations will be applied to a duct ¯ow in which x is in the streamwise direction, y in
the direction normal to the duct wall and z in the spanwise direction. The integration scheme
derived above is simple to implement and is computationally e�cient. In the simulations, the
particles are distributed uniformly at the inlet to the ¯ow domain and have the same velocity
as the ¯uid.

In Eq. (3), u+ is the instantaneous ¯ow velocity which, in the EIM, is found by adding a
random ¯uctuating component to the mean velocity U+, i.e.

u� � U� � u�
0
Nr �7�

where Nr is a random number drawn from a normal probability distribution with zero mean
and unit standard deviation, and u+ 0 {=(ux

+ 0, uy
+ 0, uz

+ 0)} is the rms value of the eddy
¯uctuating velocity, which is assumed to be given in terms of the turbulence kinetic energy k
by

u�
0

x � u�
0

y � u�
0

z � �2k=3�1=2: �8�

It is noted that use of Eq. (8) implies that turbulence in¯uences the construction of the eddy
velocity isotropically. As pointed out by Kallio and Reeks (1989), this assumption is
inappropriate when particles move in the strongly anisotropic turbulent bu�er region near a
wall. Kim et al. (1987) used DNS to obtain the variation of turbulent ¯ow quantities, including
rms velocities, with distance from the wall in rectangular duct ¯ow. The data reveal that the
di�erences between ¯uctuating velocity components are very large in the region y+<30 and
that the normal component uy

+ 0 is far smaller than the other two. Eq. (8) signi®cantly over-
estimates the value of the normal component. It will be seen later that this over-estimate leads
to large discrepancies in the results for particle dispersion.

In order to overcome this problem, three functions, fu, fv, fw, are introduced where fu and fv
are the ratios of the streamwise and the normal velocity components to their values determined
by the standard EIM, i.e.

fu � �u 0xu 0x�1=2=�2k=3�1=2; fv � �u 0yu 0y�1=2=�2k=3�1=2; �9�
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and fw is found from

fw �
���������������������������
�3ÿ f 2u ÿ f 2v�

q
: �10�

By curve-®tting the DNS data of Kim et al. (1987), the functions fu, and fv can be expressed
as

fu � 1� 0:285�y� � 6� exp�ÿ0:455�y� � 6�0:53�;
fv � 1ÿ exp�ÿ0:02y�� �11�

for values of y+ less than 80, approximately. The functions fu and fv de®ned above are strictly
only valid for the particular low Reynolds number ¯ow against which they are calibrated.
However, even at higher Reynolds numbers it is known that the normal component of
¯uctuating velocity is over-estimated by the standard EIM approach and it is anticipated that
predictions based on the above values of fu and fv will be better than those based on the
assumption of isotropy. Also, the damping functions are strictly only applicable to the duct
¯ow geometry for which they are derived, but they should be reasonably accurate for a wider
range of geometries, including the wave-plate demister geometry for which they are intended to
be used.

The other important issue in the EIM is the determination of the particle-eddy interaction
time (Ti). Normally, the particle±eddy interaction time is chosen to be the minimum of the
eddy lifetime and the time taken by a particle to cross an eddy. To facilitate the comparison
with the results of Kallio and Reeks (1989), we assume that the particle±eddy interaction time
Ti is identical to the eddy lifetime Te, which is equivalent to assuming that no particles cross an
eddy before the eddy dies. Te is evaluated from the relationship

Te � C1k=E �12�

where E is the rate of dissipation of turbulence kinetic energy, and C1 is a constant. Kallio and
Reeks (1989) sampled Ti from an exponential distribution whose mean value is the Lagrangian
integral timescale whereas the choice of a constant eddy lifetime corresponds to a delta
function distribution. Graham and James (1996) argued that whatever choice is made for the
distribution, it should be ensured that the Lagrangian integral timescale obtained from
simulations is correct for the idealised case of homogeneous, isotropic turbulence. This is
assured for a constant eddy lifetime if C1 is twice the value normally taken by other authors.
However, we use the slightly larger value C1=0.53 in the present work so that better
agreement with the mean values obtained by Kallio and Reeks (1989) is achieved.

The calculation of particle dispersion is carried out in a duct ¯ow with dimensionless half-
width h+=180 and dimensionless length x+=50,000. The numerical particle tracking scheme
is similar to that of Kallio and Reeks (1989) except for the method of the solution of Eq. (3).
A small time step (0.2 dimensionless time units) is employed to enable the analytic expressions
(5) and (6) to be used. As in Kallio and Reeks (1989), 20 equispaced bins across the channel
are used to collect particles at di�erent locations in the streamwise direction. The dimensionless
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particle deposition velocity is calculated by the same formula used by Kallio and Reeks (1989),
i.e.

V�d �
UmA

utPdx
log�Nin=Nout� �13�

where Um is the bulk mean velocity, A and P are the area and perimeter of the duct,
respectively, and dx is the length of the duct in which the number of particles entering the
section, Nin, and the number of particles leaving the section, Nout, are counted.

3. Results

Predictions of particle normal rms velocity are made, when rp/rf =590, for t+=1.1 and
t+=14.3, using the solution scheme described above and the data for the turbulent ¯ow ®eld
given by Kallio and Reeks (1989). In total 2� 105 particles are tracked in the calculations
(which take012 h cpu time on a DEC Alpha workstation). It can be seen from Fig. 1 that the
results obtained in this paper agree well with those of Kallio and Reeks (1989).
Fig. 2 shows the dimensionless deposition velocity as a function of the particle relaxation

time. It is seen that the results obtained with the unmodi®ed EIM depart signi®cantly from the
data of Liu and Agarwal (1974) and from those obtained with the modi®ed EIM. The
discrepancy becomes signi®cantly larger for particles with small relaxation times. This result
demonstrates the unsuitability of the standard EIM for the ¯ow considered. The dimensionless
deposition velocities predicted with the exact DNS data and those using the damping functions

Fig. 1. Particle normal rms velocity predictions using Kallio and Reeks' data for the ¯ow ®eld. The number in
braces denotes the value of t+.
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Fig. 2. The deposition velocity. STD EIM denotes the unmodi®ed eddy interaction model results and Mod EIM
those obtained with the modi®ed EIM.

Fig. 3. Particle normal rms velocity, t+=1.1. STD EIM denotes the unmodi®ed eddy interaction model results and
Mod EIM those obtained with the modi®ed EIM.
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agree with the measurements of Liu and Agarwal (1974) except for the region with very small
particle relaxation times. The results of Kallio and Reeks (1989) suggest that this discrepancy is
mainly due to the omission of the lift force.
Figs. 3 and 4 show the distributions of particle normal rms velocity across the duct for

t+=1.1 and t+=14.3. It is also seen that results obtained with the standard EIM are
unrealistic. The particle normal rms velocity is very close to that of the ¯ow in the case of
t+=1.1. Comparison of Figs. 3 and 4 with Fig. 1 shows that particle normal rms velocities
predicted using DNS data are smaller than those predicted using Kallio and Reeks' (1989) data
for each of the cases t+=1.1 and t+=14.3. The turbulent ¯ow data used by Kallio and
Reeks (1989) are obtained by curve-®tting Laufer's (1954) experimental data, which correspond
to pipe ¯ows with Reynolds numbers of 5� 104 and 5� 105. The turbulent intensities of those
pipe ¯ows are much higher than those of the turbulent ¯ow considered in this paper.

4. Conclusions

By using the DNS data of Kim et al. (1987) for a duct ¯ow, and from comparison with the
literature, it is shown that the combination of the standard EIM with an isotropic ¯ow ®eld
yields unrealistic predictions for features of particle dispersion for particles with dimensionless

Fig. 4. Particle normal rms velocity, t+=14.3. STD EIM denotes the unmodi®ed eddy interaction model results
and Mod EIM those obtained with the modi®ed EIM.
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relaxation times in the range 1.1±14.3. The simple damping method proposed in this paper can
account for the in¯uence of anisotropic turbulence in the near-wall region and it can be used
within the framework of k±E type turbulence models. The method is also e�cient
computationally. Results of particle dispersion obtained with the method agree well with the
experimental data of Liu and Agarwal (1974). It is now intended to apply the modi®ed method
to the problem of small droplet deposition in wave±plate demisters.
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